
Code Review Period 2 – Team 12-0075
Introduction
The code we are reviewing was written for our robot Lydia. In this section of code, Lydia is going 
to use its color-sensing camera and 2 DOF claw to detect the color of blocks and stack them 
properly (in addition to its other task of collecting poms in an effector-mounted bucket, but that 
is not the focus of this section of code). Jake Tango and Juan Vistro wrote this code so Xuelong 
Mu, Dan Wang, and Nathan Wolfe will be reviewing it. This review was conducted on February 
27-28, 2012.

Best Practices Checklist
☒ Code uses functions to organize code

☒ Code includes comments documenting the purpose of each function

☒ Code includes comments documenting the arguments and return values of each function

☒ Variable names are descriptive and convey their use in the program

☒ No unnamed numerical constants other than 0, 1, or 2

☒ Code is appropriately formatted to show flow of control

☒ Comments do not contain blocks of old code that is no longer in use.

There are currently no checklist criteria that our reviewed code fails to meet. Originally there 
was one criterion which was not met by our code, that it was not appropriately formatted to 
show flow of control. However, our programmers Juan and Jake managed to catch this grievous 
error by themselves several days before this code review.

General Code Analysis
Reliability

While our robot Lydia, for which code is being reviewed, is only going to stay on our half of 
the board and thus will likely not come into contact with an opposing robot, there is always 
the possibility that another robot may cross onto our side and collide with Lydia. As such, a 
prominent example of error detection and recovery logic in the code we have reviewed is a 
method that uses the accelerometer contained within the CBC to constantly check whether or 
not another robot has collided with our own. When this method is “tripped,” it halts the action 
of any currently running method, including movement, and keeps track of the direction and 
duration of the collision so that once the opposing robot moves away, Lydia can correct its 
motion to go back to where it was before the collision and continue on with the halted method.

This code is currently reliable the majority of the time, but its accuracy can still be increased. 
As we test our robot more, we can better determine the amount of correction that is needed 
to account for the change in direction caused by a collision with another robot. Presently our 
robot can figure out around 75% of the time how much it needs to move to return to its original 
location, but we hope to increase that figure to up to 90% through further testing and fine-tuning 



of the code.

Maintainability

Jake and Juan have written most of the code for this robot (Lydia), but our team holds weekly 
meetings that bring the entire team together, both those directly involved in programming Lydia 
and those not, to go through the coding of the previous week and discuss how it relates to the 
rest of the program. In this fashion, all our team members are able to understand what is going 
on with Lydia’s code. Since every week (typically on Mondays) people who do not necessarily 
actively program Lydia view its code, we have to ensure that it is easy enough to comprehend 
and modify as necessary. Our team captains require all our programmers to comment each 
function stating its purpose and execution, as well as additional comments concerning 
arguments and return types as applicable. As there may also be some lines of code that are 
particularly “wordy” or otherwise difficult to understand, we also encourage the use of in-line 
commenting (using the double slash the end of a line) in such cases. Thus, one programmer 
can carry on the work of another without too much confusion in the transition, which is greatly 
beneficial to the team as it allows people like Jake and Juan to share workload instead of having 
to write and tackle problems alone.

We consider our current standards of code maintainability to be fairly good, especially relative 
to previous years when there would sometimes be great confusion as to, say, the purpose of a 
method or why it even exists. One further improvement we could make is to mandate version 
documenting of edited programs, essentially noting after each edit the name of the editor and 
date, as well as a brief explanation of what was changed and for what reason. This would 
improve the maintainability of our code even more as two or three joint authors of a program will 
no longer necessarily have to talk in person to have some degree of communication, so we may 
soon implement that as an additional rule.

Effectiveness

We’ve tested this code multiple times, and it consistently performs its task of stacking the blocks 
correctly. The only errors happen when the robot fails to identify the color of one of the blocks 
correctly. This code could be improved by expanding upon its color identification function to 
have better accuracy.



Here is an example as to how the color identification function can be improved to increase 
effectiveness. The current code:

Unfortunately, the camera will not always pick up the same exact size of blob when it views the 
block, and thus produces a significant number of errors. This code produces none:


