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1 Introduction
Ever since the CMUCam was introduced to Botball in 2003, Botball teams have been trying to 
use cameras to identify and locate objects and to correct the robot’s position.  Unfortunately, 
most teams have met with limited success.  Even the top-of-the-line XBCCam yielded unstable 
results in many cases.  Subtle lighting changes can completely throw off the color detection 
algorithms, and even a single frame of bad tracking data can confuse robots which aren't 
expecting it.  For many Botball teams who attempt to utilize the camera, practice tables serve 
the primary purpose of calibrating the camera models, reducing time for other test runs and 
debugging.  The CBCCam introduced additional problems due to its high-latency operation (tests 
conducted for Hacking the CBC Botball Controller [1] yielded an average lag time of about 1/
3 of a second).  Due to the prohibitively high amount of code necessary to make the camera 
sufficiently reliable for tournament play, a better system is desirable.
 
If the camera is not the solution, what is?  Many teams have used the Sharp IR Rangefinder 
(often called "ET" in Botball circles) for simple object detection, but this also yields problems.  
The big issue is that the ET doesn't detect size, shape, or angular position; only distance.  
However, since the ET updates quickly (every 39ms) and has a narrow beam width, multiple ET 
readings with slightly differing aim can yield useful data.
 
Why would you want to use an ET instead of a camera for tracking objects?  Because of the 
camera's lag of 1/3 second, if your robot is turning until it's centered on an object, your robot 
either will have to turn very slowly or will overshoot and oscillate before finding the object.  
In contrast, the ET's 39ms update rate means that if you want to take a measurement every 5 
degrees for a 50-degree range (quite possibly overkill in Botball), you can find the object in a 
worst-case elapsed time of ~0.4 seconds, compared to ~3.3 seconds with a webcam.  In addition, 
rangefinders can easily see objects such as the transparent cups from the Botball 2009 season, 
or objects which are in poor lighting such as in the Beyond Botball 2008 cave, while a typical 
webcam will fail to identify these objects.  
 
The ET is also better suited for localization (estimating your robot’s position based on sensor 
readings) than the camera, because every millimeter of every PVC wall on the game board is 
now a data point, rather than a single colored target.  More data points give more precision, with 



random noise having less impact, and PVC walls are available in every part of the game board 
regardless of which way your robot is facing.
 
Another advantage of the ET is that camera vision is a very computationally expensive process.  
The vision system on the CBC will easily eat 50% of your CPU, and the XBC had to leave most 
of the work to expensive hardware external to the CPU (the Field-Programmable Gate Array).  
Object tracking with the ET is very fast, and can even be done by an XBC using only the GBA's 
16MHz processor -- making the 350MHz Chumby more than capable of doing so without taxing 
the system.  Finally, this research was started when the Botball kit included 2 webcams (only 
1 per CBC) but 3 ET's (all of which can be on a single CBC), which made rangefinder object 
tracking attractive to teams who don't think 1 webcam per robot is enough.  (That particular 
reason is now obsolete since 2 cameras can be used in a single CBC [2], and the Botball kit now 
only has 1 ET.)

2 Basic Design Components
RangeTrack consists of four major steps: logging, segmentation, object analysis, and 
localization.  Logging consists of reading position and range data, resulting in a set of two-
dimensional points where the rangefinder detected something.  Segmenting consists of 
identifying which subsets of the logged points correspond to which physical objects.  Object 
analysis consists of applying statistical tests to the segmented objects to identify them, e.g. as a 
pom stack or a wall.  Finally, localization uses applies additional statistical tests to the objects 
detected as walls to estimate the robot’s position.  All of these components must work reliably 
for RangeTrack to function, except localization, which is optional.  RangeTrack gives each of 
these components its own C++ class.  Some helper classes are also present, e.g. a logged data 
anti-noise filter.  RangeTrack is intended to be extensible, so a user can add support for custom 
sensors, noise filters, and segmentation algorithms, or even entirely new analysis capabilities.  In 
addition to the library which runs on the robot, RangeTrack includes the capability to export data 
to a PC for further analysis and simulation.
 
Because RangeTrack is written in C++, it requires the NHS Patchset firmware with 
Code::Blocks [3] [6].  As with all unofficial modifications to the CBC firmware, the KIPR 
warranty does not cover damage caused by the NHS Patchset or RangeTrack, and although we 
don’t believe such damage is likely, we are unable to provide a warranty ourselves.  As such, 
Botballers should be aware of what they’re getting into before using RangeTrack.

3 Installation
First off, download RangeTrack [4] and the NHS Patchset Firmware [6].  RangeTrack uses the 
Shared Libraries feature of the NHS Patchset firmware.  Instructions for using Shared Libraries 
are in CBC Hacking 2010 [3].  Once you’ve loaded the libRangeTrack project onto your NHS 
Patchset-hacked CBC, just create a new C++ CBC project in Code::Blocks, and add RangeTrack 
to the library list.  Detailed instructions for all of these procedures are in CBC Hacking 2010 [3].  
You’re now ready to code with RangeTrack!
 



4 Basic Usage
To get started, try the following code:
 
#include "RangeTrackAnalyzer.h"

#include "RangeTrackCreateDistancePositionReader.h"

#include "RangeTrackConstantPositionReader.h"

#include "RangeTrackETRangeReader.h"

#include "RangeTrackMedian5Filter.h"

#include "RangeTrackMeanFilter.h"

#include "RangeTrackVectorFilter.h"

 

#define ETPORT 6

 

RangeTrackAnalyzer *rt;

vector<RangeTrackFilter *> filterlist;

 

int main()

{

    // Port 6 is floating

    set_each_analog_state(0, 0, 0, 0, 0, 0, 1, 0);

 

    // Connect to Create

    create_connect();

    printf("Connected to Create\n");

 

    // Setup filters (Median+Mean, both with diameter 5)

    filterlist.push_back(new RangeTrackMedian5Filter());

    filterlist.push_back(new RangeTrackMeanFilter(5));

 

    // Create new Analyzer

    rt = new RangeTrackAnalyzer(

    new RangeTrackCreateDistancePositionReader(), // Create Distance is X 

axis

    new RangeTrackConstantPositionReader(0), // Y axis is always 0

    new RangeTrackConstantPositionReader(90 * 3142 / 180), 

        // Theta orientation is always 90 degrees, converted to milliradians

    new RangeTrackETRangeReader(ETPORT), // Rangefinder is an ET

    new RangeTrackVectorFilter(filterlist), // All filters in filterlist

    new RangeTrackFilter(), // Ignore this null filter, it's just boilerplate

    new RangeTrackFilter() // Ignore this null filter, it's just boilerplate

    );

    printf("Created rt\n");

 

    gc_distance = 0;

 

    printf("Initializing segmentation parameters\n");

 



    rt->SetMaxRange(600); // Ignore objects >600mm away

     

    // Edges are within 150mrad of the sensor beam; 

    // keep these values at the same magnitude unless 

    // you know what you're doing!

    rt->SetMinAngle(-150);

    rt->SetMaxAngle(150);

 

    printf("Sweeping 1 meter\n");

 

    create_drive_straight(100);

 

    while(gc_distance < 1000)

    {

        // Update odometry

        create_distance();

 

        // Update RangeTrack

        rt->UpdateAll();

 

        // Don't hog all the CPU

        msleep(5);

    }

     

    create_stop();

 

    printf("Done sweeping; dumping\n");

 

    // Dump data

    rt->DumpLog("/tmp/rt_log_straight.csv");

    rt->DumpSegment("/tmp/rt_segment_straight.csv");

 

    printf("%d segments found.", rt->GetNumSegments());

 

    printf("Dump complete; exiting\n");

}

 
This code will drive a Create 1 meter, and report any objects found by an ET aimed 
perpendicular to the Create’s path.  What’s it doing under the hood?  Read on.

5 Logging
RangeTrack logs data using sensor drivers.  A sensor driver is simply a C++ class which 
implements a method to read it.  Both odometry sensors (for measuring the position of the 
sensor) and range sensors (for measuring the distance between the sensor and the object) are 
available.  The sensors which are currently implemented are:
 

● Odometry



○ Create Distance
■ new RangeTrackCreateDistancePositionReader()

■ Returns the distance from the iRobot Create chassis in millimeters.
○ Create Angle

■ new RangeTrackCreateAnglePositionReader()

■ Returns the angle from the iRobot Create chassis in milliradians (precise 
to 1 degree).

○ Single Motor
■ new RangeTrackSingleMotorPositionReader(int port)

■ Returns the position of a DC motor in ticks, as measured by the CBC’s 
back-emf circuitry.

○ Single Servo
■ new RangeTrackSingleServoPositionReader(int port)

■ Returns the goal position of an RC servo in ticks.
○ Time

■ new RangeTrackTimePositionReader()

■ Returns a timestamp in milliseconds.
■ An easy-to-use alternative to true odometry, which is still relatively 

accurate.
○ Sum

■ new RangeTrackSumPositionReader 

(vector<RangeTrackPositionReader> readers)

■ Returns A + B, where A and B are the values of two other Odometry 
sensors .

■ Useful for calculating distance traveled by a differentially-steered robot 
chassis.

○ Difference
■ new RangeTrackDiffPositionReader 

(vector<RangeTrackPositionReader*> readers)

■ Returns A - B, where A and B are the values of two other Odometry 
sensors .

■ Useful for calculating the angle of a differentially-steered robot chassis.
○ Constant

■ new RangeTrackConstantPositionReader(long value)

■ Stores a constant value and returns it.
■ The value can be changed with a function call (yes, it’s ugly):

● ((RangeTrackConstantPositionReader*)(rt->GetXReader()

))->SetPosition(30); // X=30

■ Useful for debugging or creating custom sensors.
■ In practice, you’ll probably be using this one a lot.

○ Null
■ new RangeTrackNullPositionReader()

■ Always returns 0.
■ Kind of pointless, but useful for debugging (it was also the first sensor 

driver written for RangeTrack).
● Range

○ ET
■ new RangeTrackETRangeReader(int port)



■ Returns the distance in millimeters from the Sharp GP2D12 (“ET”) 
rangefinder.

■ Uses a lookup table, generated using a power regression, for superior 
speed and accuracy.

○ Sonar
■ new RangeTrackSonarRangeReader(int port)

■ Returns the distance in millimeters from the Maxbotix EZ-1 (CBC Sonar).
■ The EZ-1 returns a distance in inches; this is scaled to millimeters by the 

sensor driver (so the precision will never be better than 1 inch).
■ Still under development.

○ Raw Analog Range
■ new RangeTrackRawAnalogRangeReader(int port)

■ Returns the 10-bit analog-to-digital value of a sensor.
■ Useful for debugging.

 
The data logging is handled by its own C++ class, which logs four pieces of data each iteration: 
the X, Y, and Theta coordinates of the sensor (odometry sensors), and the range distance (a range 
sensor).  By convention, all distances are in millimeters, and all angles are in milliradians (not 
following these guidelines may cause unintended results).  The logger class contains a function 
called UpdateAll(), which logs one frame of data; the user program should call this function 
repeatedly when new data is desired.  (The UpdateLog() function is available when the user 
wishes for only data logging to occur with no further calculations, which conserves CPU time.)
 
The ET driver uses two useful tricks to obtain good speed and accuracy.  Because of the ET’s 
use of triangulation to measure ranges, its analog voltage is not directly proportional to distance; 
it can be very accurately estimated with a power regression [8]:
 

 
Where d is range in centimeters and s is an 8-bit analog voltage.
 
At the time when this code was being developed, the XBC was being used for Botball, and the 
Game Boy Advance was incapable of performing this floating-point math as fast as the data was 
coming in.  We instead pre-calculated the range for every possible analog voltage using Excel, 
and generated a lookup table in a .h file which is much faster.  For example, a single reading 
using the power regression took 17 milliseconds of calculation time on the XBC; the lookup 
table with identical accuracy took 12 microseconds.  Some additional storage is necessary for the 
lookup table, but the XBC has 4MiB of flash, which is more than enough (less than 1MiB is used 
by the official XBC IC firmware).
 
The speed issue is probably less relevant on the 350MHz Chumby than on the 16MHz GBA, but 
we figured there wasn’t much point in rewriting code that worked, and if it uses less CPU on the 
Chumby than it otherwise would, that’s certainly not a bad thing.

6 Noise Reduction 
Rangefinders such as the ET are extremely noisy, so some post-processing is necessary to 



obtain usable data.  Noise-reduction filters are implemented as drivers, similar to sensors.  The 
two main types of filters are a median filter and a mean filter.  Median filters are excellent at 
completely wiping out large noise, but do very little to low-level noise.  Mean filters are the 
opposite: they almost completely eliminate low-level noise, but can be severely impacted by 
large noise.  As a result of both this theoretical behavior and our non-exhaustive testing, a 
combination of a median filter and a mean filter, both with a diamater of 5 points, appears to 
yield the best results.  A visualization of the various filter options is below (the graphs depict a 
wall, with a Pringles can very close to the wall at x=300mm, and another Pringles can farther 
from the wall at x=725mm):  
 

(No Filtering)
 

(Median Filtering)
 



(Mean Filtering)
 

(Median + Mean Filtering)
 
7 End of Part 1
That’s it for Part 1.  Part 2 will continue where we leave off here, covering what information can 
be obtained based on the filtered data visualized above.  See you there!


