
CBC Hacking 2010 (Part 2)

Jeremy Rand, Matthew Thompson, Braden McDorman

Norman Advanced Botball, Nease High School, Norman Advanced Botball

biolizard89@gmail.com, matthewbot@gmail.com, braden@betabot.org

CBC Hacking 2010 (Part 2)

15 Welcome to Part 2!

Welcome back to CBC Hacking 2010. In Part 2, we’ll finish discussing our hacks, and tell you

how you can make your own. Let’s jump in! But first, the obligatory disclaimer:

DISCLAIMER: Installing unofficial firmware on your CBC carries an inherent risk of bricking

your CBC. Usually, reflashing an official firmware will cure such a brick, but in rare cases this

will not work. KIPR’s warranty does not cover damage caused by an unofficial firmware, and

we are unable to offer a warranty ourselves (but if something does happen, please do notify us so

that we can attempt to help you fix it). If this concerns you, that should be a hint that CBC

hacking is not for you.

16 Separating the Compile and Link Stages

KISS-C typically has a single .c file which contains the main() function, and various .h files

which contain the code for libraries. When the program is compiled, the preprocessor causes the

.h files’ content to be loaded into the .c file., and the .c file is then passed to GCC. This means

that all of the code in every library must be recompiled every time the main() function needs a

recompile.

Professional C/C++ programs use a different method [10]. Instead of libraries being in .h files

which are #included into the main .c file, each library is a .c file, which is only compiled when

it is updated. The .c files, instead of being compiled into .exe or .bin files, are compiled into

.o files (object files), and a linker merges the .o files into a .exe or .bin file. As a result,

unmodified libraries do not need a recompile, even if the main program or other libraries change.

The resulting speed increase quickly grows as the program gets larger and uses more libraries.

Code::Blocks does this by default.

To use linking in Code::Blocks, make sure that each library consists of a .c file (containing the

functions and variables) and a .h file (containing function prototypes and extern declarations for

global variables). Add both the .c and .h files to your project, but only #include the .h file

from your main program. Code::Blocks will take care of the rest, and you will see much faster

build times.

17 Compile+Download Performance Tests

The combination of cross-compiling, rsync downloads, and separate compile and link stages

produces some drastic speed increases, as the following comparison of compile+download times

demonstrates:

 Simple C program (1 file, 34

lines)

Complex C program (15 files,

20,282 lines)

KISS-C 2.1.1 (Windows) 12.0 seconds 14 minutes, 8 seconds

Norman/Nease Wi-Fi 1.2 [11] 9.1 seconds 43.1 seconds

Code::Blocks with

CodeSourcery G++ Lite

Cross-Compiler and rsync

Downloads

2.2 seconds 10.6 seconds

18 Compiler Optimization

Compiling with CodeSourcery G++ Lite also allows compiler optimizations [12] to be used. A

simple but effective optimization which CodeSourcery G++ Lite is able to perform on CBC

programs is constant folding. This optimization calculates as much of the mathematical

expressions in your program as possible at compile time, before the program is run. This means

the compiler will replace something like 2 * PI * WHEEL_RADIUS with 37.699 (for wheels of

radius 6) in the program binary, instead of generating code to perform that calculation on the

CBC each time the program is run. Many other optimizations, often involving much more

complex rewriting of the programmer’s code, are also performed.

These optimization features are disabled in KISS-C, because the Chumby simply does not have

the necessary CPU power to quickly optimize your code every time you compile (remember,

despite our release of binary caching last year, the official CBC firmware does a complete

recompile every time you switch programs, so optimizations would slow down the process of

switching programs and become exceedingly annoying). However, a PC can easily perform

these optimizations at compile time, and still compile far faster than the Chumby does. We have

configured Code::Blocks to enable optimizations, so CBC programs created in Code::Blocks will

not only compile and download faster, but will also run faster on the CBC. Although the average

Botball programmer does not need the added execution speed (as demonstrated by the

proliferation of CBCJVM [13] and CBCLua [14], which are slower than C), power users who

need every CPU cycle they can get will likely benefit from compiler optimization.

19 C++ Programming

Code::Blocks and CodeSourcery G++ Lite support C++ as well as C. Simply click File → New

→ Empty File, and give it the file extension .cpp rather than .c. Code::Blocks will

automatically compile with g++ (the C++ compiler) rather than gcc (the C compiler). The entire

GNU standard C++ library [15] is available to you, so object-oriented fans who want low-level

hardware access no long have to choose between C’s low-level access and Java’s object-

orientation.

Make certain that if you are linking C++ code with C code, your C code’s .h files are C++-

compatible. This usually means putting the following at the top of your .h file:

#ifdef __cplusplus /* If this is a C++ compiler, use C linkage */
extern "C" {
#endif

And this at the bottom of your .h file:

#ifdef __cplusplus /* If this is a C++ compiler, use C linkage */
}
#endif

Wikipedia has an explanation of why this is necessary [16].

20 Shared Libraries

When KISS-C and the official CBC firmware compile and download your program, all of the

program’s libraries are merged into the final binary file. This can be annoying, because if you

identify a bug in a library and fix it, you need to track down, re-download, and re-compile every

program that uses the library. It also increases the binary size of your programs, which eats

unnecessary storage and slows your downloads.

We have configured Code::Blocks and the NHS Patchset CBC Firmware to allow shared

libraries (also called dynamically linked libraries) [17]. This is the system used by most modern

operating systems. The library binaries are stored in different files on the CBC from the main

program binaries. When you run the main program binary, the library routines in the library

binary are dynamically linked into your main program. As a result, you can update your library

once, and the enhancements or bug fixes will automatically propagate to all your programs on

the CBC, after just one download. This also speeds up downloads, since only a library or a main

program file must be downloaded, instead of both.

To create a shared library in Code::Blocks, follow these steps:

1. Create a new CBC project, but base it on libCBCLibrary instead of CBCProject. Make

sure that the name of your project starts with lib.

2. Write your library in the new project.

3. When you're done creating the library, build the project.

4. Assuming you got no errors, the library and its include headers will be copied to the

appropriate directories on both your PC and CBC.

5. Now, open a main program project which you want to utilize to the library.

6. Right-click on the program project on the left-hand side and choose Build Options.

7. For each target on the left-hand list, click on Linker Settings → Add, and type the name

of the library WITHOUT the lib at the beginning. For example, for the example library,

you would type CBCLibrary. (We're trying to find a good way to keep you from

having to do this 4 times.)

8. Click OK.

9. Add code to the program project which utilizes the library.

10. Now, when you build the program, it will automatically link with the shared library at

run-time. Building the library will update it for all programs on the connected CBC

which utilize that library.

Note that shared libraries probably don't work properly in the simulator. We’re planning to fix

this, but it's not a high priority.

21 KISS-Sim from Code::Blocks

To compile a program in Code::Blocks for KISS-Sim rather than targeting the CBC, simply click

SimulatorDebug (debuggable without optimizations) or SimulatorRelease (optimized, no

debugging) in the Target list. The Build button will compile and link the program, and the Run

button will launch KISS-Sim with your program. This target switching works much the same

way that KISS-C does. Debug and Release use the CodeSourcery G++ Lite compiler with the

CBC include and lib directories (copied from the CBC firmware with minor modifications)

and automatically #include the autoinclude_cbc.h file (which loads the same header files that

the official CBC firmware’s compile script uses. SimulatorDebug and SimulatorRelease, in

contrast, use the PC GNU compiler with the KISS-Sim include and lib directories (copied

from the KISS-C install folder) and automatically #include the autoinclude_sim.h file (which

loads the same header files that KISS-C uses).

22 VNC Remote Desktop Enhancements

Last year, we explained how to use VNC [18] to enable remote desktop access on the CBC, so

that the CBC could be operated without using the touch-screen. Unfortunately, the code we

released then required the Chumby screen to be disabled while the VNC user was connected, and

the Chumby needed to be rebooted to switch back to the Chumby screen. As a result, VNC was

less usable than we would have liked, and we do not know of any other Botball teams who used

VNC over the past year (there was certainly no discussion of the feature on the Botball

Community). This year, in addition to recompiling the VNC plugin for the Chumby 1.7.1

firmware, we have modified the VNC code to permit simultaneous touch-screen and remote

access. Simply open Code::Blocks and click Tools → Remote Desktop Via VNC. A VNC

session will open on your computer, and the CBC will remain uninterrupted.

23 Fixing GDB Debugging

Last year, we explained how GDB [19] can bring back the interaction features that IC had but

KISS-C didn’t have. Unfortunately, the CBCv2 broke GDB debugging; KIPR apparently forgot

to recompile GDB for Chumby firmware 1.7.1, so the GDB binary refuses to run. As such, we

had to either recompile GDB or find a new method for debugging. We weren’t up to the task of

compiling GDB, but luckily we found another solution: gdbserver. gdbserver is included in

the Chumby firmware, and allows the CodeSourcery PC-side GDB binary to debug programs on

the Chumby via Wi-Fi. The setup is somewhat less user-friendly than standard GDB, because

the user program’s output and the GDB output are in different windows. To fix this, we used

some bash script trickery to merge both output streams into one window. The result feels

roughly the same to the user as our CBCv1 GDB method, except that the user program’s

standard input stream cannot be accessed from the GDB window.

To debug a program (to achieve IC-like functionality), switch to the Debug (not Release) target

which enabled debugging support and disables optimizations. Make sure that the Debug target

has been built and downloaded to the CBC, then click Tools → Interact/Debug Via GDBServer.

Once you are presented with a GDB prompt, use the following controls:

● cont

○ Resumes your program (it starts out paused; you do not need to use the run

command).

● Ctrl+C

○ Pauses your program and displays a GDB prompt.

● call fd(0)

○ Executes the command fd(0) the way IC would; you can use any command

(including variable names or math expressions). This only works when your

program is paused.

● quit

○ Ends your program and your interaction/debugging session.

For more details, see the GDB manual which came with CodeSourcery G++ Lite.

For cases in which you need to enter text into the user program’s standard input stream, we have

included an alternate method which keeps the user program and GDB in separate windows.

Click Tools → Start GDBServer, and wait for Listening on port 5000. Then click Tools →

Connect to GDBServer, and wait for a GDB prompt. Type GDB commands and the Ctrl+C into

the second window, and use the first to access the program’s standard input and output streams.

This is more annoying than the single-window method described above; only use this method

when you need access to the user program’s standard input stream.

24 Setting Up a Firmware Development Environment

Firmware development makes extensive use of the GNU toolchain, Qt Embedded [20], and other

Unix tools like make and wget, and as such is easiest to set up on a Linux environment (Cygwin

[21] is not supported). If you already use Linux, you’re in luck, but if you’re a Windows user the

easiest way we’ve found to get started is simply to get Linux in a virtual machine such as

VMWare Player [22].

Once you’ve got a Linux install up, you’ll want to follow the directions on the ChumbyWiki,

http://wiki.chumby.com/mediawiki/index.php/GNU_Toolchain, to set up the GNU

toolchain. This is the native Linux equivalent to the CodeSourcery toolchain introduced above as

part of Code::Blocks.

KIPR uses a version control system known as Git [23] to manage their source code. You’ll need

to install Git through your Linux distribution’s package manager. If you use the ever-popular

Ubuntu or any other Debian based distribution, simply run sudo apt-get install git in a

terminal session, and Git will be automatically downloaded and installed.

The last thing needed in a firmware development environment is an installation of Qt Embedded

[20], the framework with which the CBC user interface is written. We’ve created a simple build

script that automates the download and installation of Qt Embedded which can be obtained

through Git. Just run the following commands to use it:

1. git clone git://github.com/matthewbot/CBCBuildScripts.git
2. cd CBCBuildScripts
3. sudo make

This script unfortunately takes a while to run. Expect it to take 30 minutes on a decently fast

computer, and possibly several hours on a slower computer or laptop. When this command

completes, you’re all set to build the source code.

25 Downloading and Building the Source Code

The CBC and CBOB firmware source code are hosted on GitHub, a free Git repository hosting

service. KIPR’s official repository can be found at http://github.com/kipr/cbc, while the

NHS Patchset repository can be viewed at http://github.com/matthewbot/cbc. To build the

NHS Patchset, just use these commands: (simply change the clone URL to refer to the KIPR

repository if you’d like to build the official code).

1. git clone git://github.com/matthewbot/cbc.git

2. cd cbc

3. make

This command could also take some time to run, although generally it will take less time than the

CBCBuildScripts. When it finishes, you’ll find your own custom made userhook0 at

filesystem/upgrade/userhook0. Unfortunately, making changes to various parts of the

firmware is beyond the length and scope of this paper, but if you’ve gotten this far, you won’t

find it difficult. Just stop by the Botballer’s Chat and ask someone where to begin to make your

desired change. If you begin to make a lot of changes, you can even set up your own GitHub

repository to publish them, allowing them to easily be merged into the main NHS Patchset!

26 Conclusion

We hope you enjoyed reading about the CBC hacks from the past year. Now it’s your turn!

Build a hack, and post about it on the Botball Community [24]. And please give us feedback on

our hacks as well -- most of our ideas come from teammates’ or other Botball friends’

comments. We’d also like to thank our one-person beta-testing team, Marty Rand from Norman

Advanced Botball, for putting up with hours of repeated failed tests. (His complaints are why

our hacks are as stable as they are.) We can be found at the Botball Forums and the Botballer’s

Chat at the Botball Community.

Happy Hacking!

References

[10] tepples. Frequently Asked Questions: C and C++: How do I put multiple files in a

program? http://forum.gbadev.org/viewtopic.php?p=6772#6772, January 2008.

[11] J. Rand, M. Thompson, B. McDorman. Norman/Nease CBC Mod Installer v1.2.

http://community.botball.org/forum/technical/programming/normannease-cbc-mod-installer-v12-

supports-cbcv2, February 2010.

[12] Wikipedia contributors. Compiler optimization.

http://en.wikipedia.org/wiki/Compiler_optimization, May 2010.

[13] B. McDorman, B. Woodruff, A. Joshi, J. Frias. CBCJVM - Applications of the Java Virtual

Machine with Robotics. Proceedings of the 2010 Global Conference on Educational Robotics,

July 2010.

[14] M. Thompson. CBCLua: Bringing Lua Scripting to Competitive Robotics. Proceedings of

the 2009 Global Conference on Educational Robotics, July 2009.

[15] Wikipedia contributors. C++ Standard Library.

http://en.wikipedia.org/wiki/C%2B%2B_Standard_Library, April 2010.

[16] Wikipedia contributors. Compatibility of C and C++: Linking C and C++ code.

http://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B#Linking_C_and_C.2B.2B_co

de, January 2010.

[17] Wikipedia contributors. Dynamic linking.

http://en.wikipedia.org/wiki/Library_%28computer_science%29#Dynamic_linking, June 2010.

[18] Wikipedia contributors. Virtual Network Computing.

http://en.wikipedia.org/wiki/Virtual_Network_Computing, June 2010.

[19] Wikipedia contributors. GNU Debugger. http://en.wikipedia.org/wiki/GNU_Debugger,

June 2010.

[20] Nokia Corporation. Embedded Linux - Qt. http://qt.nokia.com/products/platform/qt-for-

embedded-linux/, 2010.

[21] Red Hat, Inc. Cygwin. http://www.cygwin.com/, April 2010.

[22] VMWare, Inc. VMWare Player. http://www.vmware.com/products/player/, May 2010.

[23] S. Chacon. Git - Fast Version Control System. http://git-scm.com/, April 2010.

[24] Botball Youth Advisory Council. Botball Community. http://community.botball.org, May

2010.

