

Hacking the XBC Firmware:
Programming the XBC in Standard C++
Part 2
Jeremy Rand and Fahrzin Hemmati
Norman High School and La Jolla High School
jeremy@asofok.org, fahhem@berkeley.edu

Hacking the XBC Firmware:
Programming the XBC in Standard C++

Part 2

1 Introduction
Welcome to Hacking the XBC Firmware, Part 2! Before proceeding, you should already have
read Part 1, and followed all of its instructions. If not, you’re likely to be confused as heck
before the end of Part 2. Now that you’ve set up the firmware, learned how to upload it to your
XBC, learned how CallMLs work, and possibly messed with a Cport cable, you’re ready to start
modifying the firmware source. We’re going to give you some examples on how to hack the
firmware to change the colors on the GBA screen, detect when a motor has stalled, run a C++
function of your design when an event happens, and run your entire program in C++ without
using IC at all. Remember, this is just the tip of the iceberg when it comes to firmware hacking –
we’re still finding new things you can do with it. So, after the obligatory disclaimer, let’s jump
right in!

DISCLAIMER: Using an unofficial firmware with an XBC is officially unsupported, meaning
that if it doesn't work, KIPR and Charmed Labs are not obligated to help you. KIPR and
Charmed Labs have both been very nice to me about this and have tried to be helpful, but there
have been many times where they just said either, "We don't know why it's screwing up," or else,
"We don't have time to investigate it, we have higher priorities." If this sounds like something
you're not up for, firmware hacking may not be for you.

2 Adding a CallML: Setting the Background Color
Let's add a couple of CallMLs to XBCRobot.cxx. The first will take 3 arguments, so it will be of
the form 3xxx. Let's make it 3700. Have you ever wished you could change the colors of the
text on the GBA screen? Well, if you look through libgba, in palette.h and palette.cxx, you'll see
some functions that might help us. (Get used to looking through libgba and libxrc to find
interesting functions -- Charmed Labs doesn't have any documentation for most of these, so
you'll have to find stuff out yourself.) You should be eyeing the SetColor() and WriteToGBA()
functions. Read those functions now if you haven’t already; the comments on SetColor() are
especially useful, as they tell us that the RGB range is 0-31. Looking through ICRobot.cxx
(ICRobot constructor function), you can see that m_palette is the name of the palette object used
by the firmware, and you can see the numbering of the two text colors (foreground = 253,
background = 254) as well. Let's set the background color to whatever the IC program sends to
the CallML. Putting this all together, you get the following added to the
XBCRobot::CallML3Translator() function, at the end (but before the "default" label):

case 3700:
 m_palette->SetColor(254, argument1, argument2, argument3);
 m_palette->WriteToGBA();
 break;

argument1, argument2, and argument3 will be the RGB values of the background color we wish
to use.

3 Adding a CallML: Reading the Motor Outputs
Next we're going to add an XBC function rather than a GBA function. If you're familiar with the
Lego NXT controller, you may have tried to read the PWM output of a motor so that you could
detect if it had stalled. This works because if the motor has additional load on it, it has to work
harder to maintain the same velocity, so the PWM output increases. On the NXT, this is directly
available to programmers. Well, we're going to do the same thing with the XBC. Check out the
libxrc directory, and the file within it called axeso.h. Do you see a function there that might be
useful? (Again, looking through libgba and libxrc to find interesting stuff can be very
productive.) You should be eyeing GetPWM(). This CallML will only take 1 argument (the
motor), but will return a value as well. Let's add a new CallML with ID 1700 to the
XBCRobot::CallML1Translator() function:

case 1700:
 return(GetPWM(argument1));

After we've added these CallMLs, we'll need to run "make clean" on the firmware (so that it
removes old versions), and then make and upload it as usual (with the
"USE_BOOTLOADER=1" if you're using the serial uploader, without if you're using Cport).
The “make clean” command deletes old versions of the binary files that the compiler generated.
Always remember that whenever you change a file after you’ve already compiled the firmware,
you need to run “make clean”. If you don’t, the compiler will see that the source files you
changed have already been compiled, and it won’t recompile them. Similarly, if you change a
file in libgba or libxrc, you’ll need to navigate (using the cd command) to that directory, run
make clean, and then make it as normal.

4 Using the CallMLs From IC
Now we're going to write a simple IC program that uses these CallMLs. Read through the
following code:

void main() {
 int getpwm;
 int color;

 mav(0, 25); // Tell the motor to move slowly.
 while(! b_button())
 {
 getpwm = callml(1700, 0); // GetPWM, -255 to 255
 color = (getpwm+255) / 16; // Scale it to 0 to 31
 callml(3700, color, 31-color, 0); // Set the background color so
that Red and Green are inverses of each other, while Blue is 0

 msleep(20L); // Wait a bit
 }
 mav(0, 0); // We’re done, stop the motor.
}

Now load this IC program onto an XBC with your modified firmware. Plug a motor into port 0.
Run the program. You should notice that the background color of the text changes to a greenish
red and hovers around a certain value. Grab the motor, and try to stop it turning. The color
should jump to bright red. Now push the motor in the other direction, so that it's going faster
than it should. The color should immediately jump to green. Congratulations, you have just
made your first useful program using a hacked firmware! You could use this code to detect
when you've hit a wall, without using a touch sensor. How cool is that?

5 Entire Programs in C++
You don’t have to only use C++ for simple CallMLs, you can also run the entire program in C++
in the firmware. The main advantage to this is that the firmware runs at a much higher speed,
due to it being run natively and not interpreted. However that is not the only reason, and in your
own trials you will realize how much a real programming language (with C99 features) makes
your day easier and how much more efficient your programs will be.

First we will be creating a function at the end of XBCRobot.cxx, which will be our program. We
could have used ICRobot.cxx if we were so inclined. Within this function you’ll be able to do
anything you could in IC (since the IC library isn’t made for you, you’ll have to recreate it) but
with a much greater speed and with access to cooler features. Let’s recreate the IC program we
showed you in Section 4.

void XBCRobot::GetPWMTest() {
 int current_getpwm;
 int color;

 HappyBeep(); // ICRobot.cxx: send out a beep to say we're alive and in
the firmware

 IcMoveVelocity(0, 25, m_motionAccel[0]); // ICRobot.cxx: Tell the motor
to move slowly.

 while(CallML1Translator(113, 0) & GBA_KEY_B) // ICRobot.cxx and
libxbc.ic: we're combining the IC function check_button, the CallML, and the
#define for the B button from libgba/gba.h. So this is while(! b_button()).
 {
 current_getpwm = GetPWM(0); // GetPWM, -255 to 255
 color = (current_getpwm+255) / 16; // Scale it to 0 to 31
 CallML3Translator(3700, color, 31-color, 0); // Set the color so
that Red and Green are inverses of each other, while Blue is 0

 // C++ version of sleep (from HappyBeep()), times are in
microseconds
 CSimpTimer timer;
 long long unsigned startTime, currentTime;
 timer.GetCount(&startTime);
 timer.GetCount(¤tTime);

 while(currentTime - startTime < 20000L) // 20000 microseconds =
20 milliseconds

timer.GetCount(¤tTime);
 }
 IcMoveVelocity(0, 0, m_motionAccel[0]); // ICRobot.cxx: We're done,
stop the motor.
}

Remember that in C++, you need to prototype your functions. So add the following line to the
XBCRobot class declaration in XBCRobot.h:

void GetPWMTest();

The whole thing looks unholy and messy, due to the fact that the C++ libraries are somewhat more
complex than their IC counterparts, but it’s nothing that a few nice additional wrapper functions or
#defines couldn’t fix. Functions you might want to recreate in C++ are msleep() and the GBA button
functions (you could use the IC library versions as a guide).

6 IC Bootloader for C++ Programs
Okay, so we have a C++ function in XBCRobot.cxx, which composes our main program. How
do we make it run? You could mess with the internals of the firmware, so that it runs your
function on boot, but there’s a simpler way (always remember the KISS Principle!). Just make a
CallML in XBCRobot.cxx that calls your function, and make a simple “Bootloader” IC program
which calls that CallML.

The CallML:

case 1800:
 GetPWMTest();
 break;

And the IC program:

void main() {
 callml(1800, 0);
}

That was easy, wasn’t it? Just run that IC program on an XBC running a firmware that contains
your GetPWMTest() function and CallML, and your C++ code will run instead of an IC
program!

7 Interrupts
Now, we will do something that IC can’t – interrupts. This, we believe, is among the best
features hidden-yet-available to the Botball programmer. An interrupt, briefly, can be used to
run a function of your design automatically when a certain event happens, without requiring any
change in the code that was running at the time the event occurred. If you’re navigating through
a course but want to stop as soon as a touch sensor gets hit, an interrupt can, for example, be
triggered by the touch sensor and cause the robot to stop its motors, then returning you to your

running code seamlessly. Unlike multitasking in IC, an interrupt allows you to wait for an event
while using no processing time whatsoever. When the event is triggered, the program is
'interrupted' and the Interrupt function is executed immediately; you don’t have to wait for a
process to switch after 5ms like you would with IC processes. As an example, we’re going to
modify our above C++ program’s CallML so that when a digital port changes state, the GBA
beeps.

case 1800:
 // m_pIntCont is the Interrupt Controller of XBCRobot's ancestor class,
CAxesOpen (libxrc/axeso.h)
 // 21 is an interrupt "vector" which indicates the digital port
interrupt

 // Store a pointer to the existing Interrupt() routine; otherwise we'll
overwrite the existing digital port interrupt functionality
 m_orig_dig_int = m_pIntCont->m_vectors[21];

 // Set up Interrupt
 m_pIntCont->Register(this, 21); m_pIntCont->Unmask(21);
 *(m_gpio.m_intMask) = 0x01; // Interrupt for first digital port; see
libxrc/gpioint.h for details

 GetPWMTest();

 // Put Interrupt back the way we found it
 m_pIntCont->Register(m_orig_dig_int, 21);

 break;

And, we need an Interrupt() function; this goes at the bottom of XBCRobot.cxx

void XBCRobot::Interrupt(unsigned char vector) {
 if(vector == 21) { // Check if it's the digital port
 m_orig_dig_int->Interrupt(vector); // do what normally happens
with a digital interrupt
 HappyBeep();
 }
 else
 // XBCRobot is descended from CAxesClosed, which has its own
Interrupt; we don’t want to interfere with it, so pass through to CAxesClosed
if the Interrupt vector isn’t the digital port.
 CAxesClosed::Interrupt(vector);
}

And don’t forget the prototype and variable declaration in XBCRobot.h:

IInterrupt * m_orig_dig_int;
virtual void Interrupt(unsigned char vector);

When you set up an interrupt, you are putting the address of the Interrupt() function in a place in
memory so that when an interrupt is triggered and you’ve designated an Interrupt() function, it
will jump to the point in memory and start executing. Encoders were implemented using
interrupts, but their function simply increments their counter. Interrupts allow a non-linear

program based on events as opposed to the original parallel program system and can be quite
useful if used properly.

8 Testing it Out
Okay, so we’ve rewritten our IC program in C++, and configured it using interrupts to beep
when a digital port is activated. Compile, upload to your XBC, and upload your Bootloader IC
program using the IC interface. Run the program. You should see roughly the same behavior as
the IC version. However, try out a touch sensor plugged into the first digital port (port 8). Every
time you toggle it, the GBA will beep! That particular interrupt was kind of useless, but you can
probably think of some good uses.

9 Additional Notes on Interrupts
There's a bug in our code above – during the beep, our code stops running because the Interrupt()
function hasn’t returned. A notable property of interrupts is that they don’t run in parallel or
automatically return after 5ms like with IC processes. An Interrupt() function will keep control
of the CPU until it returns. In fact, even other interrupts won’t run while your Interrupt()
function is active – this means that, for example, motor speeds will stop being dynamically
controlled, and your sonar sensor won’t return an accurate reading. This means that you should
engineer your Interrupt() functions such that they don’t take too long to execute, because your
main program won’t continue until the Interrupt() function returns. In fact, if your Interrupt()
function has to wait for anything, it’s probably poorly engineered. In general, rather than waiting
for something else to occur, your Interrupt() function should set a variable and/or set up another
interrupt to trigger later. Interrupts are available for just about everything that you might want to
wait for (see Section 11), and by using them instead of blocking, your main code won’t have to
halt as well. For example, rather than sleeping for 500ms within an interrupt, you might set a
GBA timer to generate another interrupt after 500ms (again, see Section 11).

10 Additional Notes on C++ VS IC
When should a program be written solely in C++, and when should it be written in IC with a few
C++ CallMLs? The key advantages to pure C++ are speed (C++ is 85 times faster than IC in our
informal benchmarks) and interrupts. If you have a program that, in IC, would be written
without processes, it is almost always preferable to use C++ by itself, since C++ is native, while
IC uses p-code, which makes C++ vastly faster. Similarly, interrupts are more efficient than
processes, so if you would ordinarily use IC processes, but you can accomplish the same thing
with interrupts, go for it – your code will run much faster. In the rare case that you need fully-
fledged processes to run in parallel, rather than your code being interrupted periodically, IC is
the way to go (just stick all the C++ functionality you need into CallMLs). However, there is a
middle ground. If, for part of your program’s execution, you don’t need multiple processes, you
can make that portion a C++ program, and access it as a CallML from the middle of your IC
program. Once the C++ program finishes executing, your IC program will resume. Interrupts
will also function while an IC program is executing, and you can easily add CallMLs to
manipulate the interrupts. This kind of “hybrid” C++/IC programming can be very effective, as
it takes advantage of the best features of both languages.

11 List of Available Interrupt Vectors
If you’d like to use interrupts, looking at the existing implementations can be very helpful.
Here’s a list of the available vectors, their functions, and (for the XBC vectors) their files. GBA
vectors (0-12) are (we think) unused by the XBC firmware. (List of GBA vectors taken from
libgba/gba.h.)
Vector Function
0, 1, 2 GBA Video Hardware
3, 4, 5, 6 GBA Timers (useful for interrupting after a specified time period)
7 GBA Serial Port (NOT the XBC serial port)
8, 9, 10, 11 GBA DMA
12 GBA Keypad
16 XBC Serial Port / Bluetooth Receive

(icfirmware/src/libicxportcommon/CBluetoothDevice.cxx,
icfirmware/src/libicxbc/CUartDevice.cxx)

17, 18, 19 Vision Controller (libxrc/vision.cxx)
20 BackEMF/Analog Input Update (libxrc/axeso.h and libxrc/axesc.cxx)
21 Digital Inputs (icfirmware/src/libicxbc/CXBCGpio.cxx)

12 Conclusion
So, now we’re finished with this guide. Where to now? We recommend reading through libxrc
and libgba to get more ideas and learn more about how the XBC and GBA hardware works.
You’ll learn loads, and probably find some useful prewritten code you didn’t know about, just
waiting to be hooked into the IC firmware. You also might learn from GBA programming
guides on the Internet (homebrew GBA development is very popular; just search Google). Keep
in mind that very few, if any, of the GBA homebrewers on the Internet use the Charmed Labs
libraries, so you’ll probably need to modify whatever you find to work well with the Charmed
Labs libgba. (Charmed Labs’ libgba is not the same as the libgba used by most homebrewers).
If you’re looking for a technical reference on programming the GBA, check out GBATEK [1],
which details all of the GBA hardware (including all of the GBA interrupt vectors listed above)
and how to access it. It’s pretty technical, so you probably wouldn’t want to solely use it for
programming something, but it’s helpful if you’re looking through libgba and can’t figure out
what something is doing.

We’d love to hear what you do with the firmware. If you do something awesome with it, or if
you have simple questions, please don’t hesitate to e-mail us. (Please note that we cannot
provide full-fledged technical support for your modifications or for the firmware and/or libraries
themselves.) Thanks for reading!

13 References

[1] M. Korth. GBATEK. http://nocash.emubase.de/gbatek.htm, 2007.

